napari macro-kit
Executable script generation for napari plugins
Executable script generation for napari plugins.
↑ Example showing the real-time recording of GUI operation.
This napari plugin aims at making image analysis reproducible with arbitrary input/output types.
Usage¶
Create a macro object, decorate functions with record
method and run!
from napari_macrokit import get_macro
macro = get_macro("my-plugin-specifier") # get macro object
# define a function
@macro.record
def add(a: float, b: float) -> float:
return a + b
# run
result = add(3.2, 5.4)
add(result, 1.0)
macro
# Out:
# >>> float0 = add(3.2, 5.4)
# >>> float1 = add(float0, 1.0)
Record GUI Operations¶
You can use recordable functions in your widgets to keep tracks of GUI operations.
More simply, you can double-decorate functions with record
and magicgui
.
import numpy as np
from magicgui import magicgui
import napari
from napari.types import ImageData
from napari_macrokit import get_macro
macro = get_macro("my-plugin-specifier") # get macro object
# define recordable magicgui
@magicgui
@macro.record
def add(image: ImageData, b: float) -> ImageData:
return image + b
viewer = napari.Viewer() # launch a viewer
viewer.add_image(np.random.random((100, 100))) # image data
viewer.window.add_dock_widget(add) # add magicgui to the viewer
Running add twice in GUI and you'll find macro updated like below.
macro
# Out
# >>> image0 = add(viewer.layers['Image'].data, 0.06)
# >>> image1 = add(image0, 0.12)
Combining Plugins¶
Suppose you have two modules that use napari-macrokit
.
# napari_module_0.py
from napari.types import ImageData
from scipy import ndimage as ndi
from napari_macrokit import get_macro
macro = get_macro("napari-module-0")
@macro.record
def gaussian_filter(image: ImageData, sigma: float) -> ImageData:
return ndi.gaussian_filter(image, sigma=sigma)
@macro.record
def threshold(image: ImageData, value: float) -> ImageData:
return image > value
# napari_module_1.py
from napari.types import ImageData
import numpy as np
from napari_macrokit import get_macro
macro = get_macro("napari-module-1")
@macro.record
def estimate_background(image: ImageData) -> float:
return np.percentile(image, 10.0)
You can use functions from both modules to build an analysis workflow by collecting existing macro objects with collect_macro
function. All the recordable actions in the modules will also be recorded to the returned macro object.
import numpy as np
from napari_macrokit import collect_macro
from napari_module_0 import gaussian_filter, threshold
from napari_module_1 import estimate_background
# global_macro will record all the macro available at this point
global_macro = collect_macro()
# start image analysis!
image = np.random.random((100, 100))
out = gaussian_filter(image, 2.0)
thresh = estimate_background(out)
binary = threshold(out, thresh)
macro
# Out
# >>> image0 = gaussian_filter(arr0, 2.0)
# >>> float0 = estimate_background(image0)
# >>> image1 = threshold(image1, float0)
This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.
Installation¶
You can install napari-macrokit
via pip:
pip install napari-macrokit
To install latest development version :
pip install git+https://github.com/hanjinliu/napari-macrokit.git
Contributing¶
Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.
License¶
Distributed under the terms of the BSD-3 license, "napari-macrokit" is free and open source software
Issues¶
If you encounter any problems, please file an issue along with a detailed description.
Supported data:
- Information not submitted
Plugin type:
GitHub activity:
- Stars: 3
- Forks: 1
- Issues + PRs: 0