The napari hub is transitioning to a community-run implementation due to launch in June 2025.
Since October 1, 2024, this version is no longer actively maintained and will not be updated. New plugins and plugin updates will continue to be listed.

napari macro-kit

napari-macrokit

Executable script generation for napari plugins

License BSD-3 PyPI Python Version tests codecov napari hub

Executable script generation for napari plugins.

Example showing the real-time recording of GUI operation.

This napari plugin aims at making image analysis reproducible with arbitrary input/output types.

Usage

Create a macro object, decorate functions with record method and run!

from napari_macrokit import get_macro

macro = get_macro("my-plugin-specifier")  # get macro object

# define a function
@macro.record
def add(a: float, b: float) -> float:
    return a + b

# run
result = add(3.2, 5.4)
add(result, 1.0)

macro

# Out:
# >>> float0 = add(3.2, 5.4)
# >>> float1 = add(float0, 1.0)

Record GUI Operations

You can use recordable functions in your widgets to keep tracks of GUI operations. More simply, you can double-decorate functions with record and magicgui.

import numpy as np
from magicgui import magicgui
import napari
from napari.types import ImageData
from napari_macrokit import get_macro

macro = get_macro("my-plugin-specifier")  # get macro object

# define recordable magicgui
@magicgui
@macro.record
def add(image: ImageData, b: float) -> ImageData:
    return image + b

viewer = napari.Viewer()  # launch a viewer
viewer.add_image(np.random.random((100, 100)))  # image data
viewer.window.add_dock_widget(add)  # add magicgui to the viewer

Running add twice in GUI and you'll find macro updated like below.

macro
# Out
# >>> image0 = add(viewer.layers['Image'].data, 0.06)
# >>> image1 = add(image0, 0.12)

Combining Plugins

Suppose you have two modules that use napari-macrokit.

# napari_module_0.py

from napari.types import ImageData
from scipy import ndimage as ndi
from napari_macrokit import get_macro

macro = get_macro("napari-module-0")

@macro.record
def gaussian_filter(image: ImageData, sigma: float) -> ImageData:
    return ndi.gaussian_filter(image, sigma=sigma)

@macro.record
def threshold(image: ImageData, value: float) -> ImageData:
    return image > value
# napari_module_1.py

from napari.types import ImageData
import numpy as np
from napari_macrokit import get_macro
macro = get_macro("napari-module-1")

@macro.record
def estimate_background(image: ImageData) -> float:
    return np.percentile(image, 10.0)

You can use functions from both modules to build an analysis workflow by collecting existing macro objects with collect_macro function. All the recordable actions in the modules will also be recorded to the returned macro object.

import numpy as np
from napari_macrokit import collect_macro
from napari_module_0 import gaussian_filter, threshold
from napari_module_1 import estimate_background

# global_macro will record all the macro available at this point
global_macro = collect_macro()

# start image analysis!
image = np.random.random((100, 100))

out = gaussian_filter(image, 2.0)
thresh = estimate_background(out)
binary = threshold(out, thresh)

macro
# Out
# >>> image0 = gaussian_filter(arr0, 2.0)
# >>> float0 = estimate_background(image0)
# >>> image1 = threshold(image1, float0)

This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

Installation

You can install napari-macrokit via pip:

pip install napari-macrokit

To install latest development version :

pip install git+https://github.com/hanjinliu/napari-macrokit.git

Contributing

Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.

License

Distributed under the terms of the BSD-3 license, "napari-macrokit" is free and open source software

Issues

If you encounter any problems, please file an issue along with a detailed description.

Version:

  • 0.0.1

Last updated:

  • 27 January 2023

First released:

  • 27 January 2023

License:

Supported data:

  • Information not submitted

Plugin type:

GitHub activity:

  • Stars: 3
  • Forks: 1
  • Issues + PRs: 0

Python versions supported:

Operating system:

Requirements:

  • numpy
  • magicgui
  • qtpy
  • macro-kit (>=0.4.0)