Timelapse Processor
meta plugin to ease processing timelapse image data
meta plugin to ease processing timelapse image data
API¶
This plugin exposes two principal funcionalities:
TimelapseConverter¶
The TimelapseConverter
class allows you to stack or unstack any of the supported napari layers from 4D data into a list of 3D layers or vice versa. Currently supported layers are:
napari.layers.Image
napari.layers.Labels
napari.layers.Points
napari.layers.Vectors
napari.layers.Surface
napari.layers.Tracks
are intrinsically 4D and thus not supported.
Unstacking example usage:
from napari_timelapse_processor import TimelapseConverter
import numpy as np
image_4d = np.random.rand(10, 32, 32, 32) # 10 timepoints of 32x32x32 data
converter = TimelapseConverter()
list_of_images = converter.unstack(image_4d, layertype='napari.types.ImageData')
Stacking example usage:
from napari_timelapse_processor import TimelapseConverter
import numpy as np
random_points = [np.random.rand(10, 3) for _ in range(10)] # 10 timepoints of 10 random 3D points
converter = TimelapseConverter()
# stack the points into a single 4D layer
stacked_points = converter.stack(random_points, layertype='napari.types.PointsData')
The TimeLapseConverter
class also supports (un)stacking the napari.layers.Layer
type (and its above-listed subclasses). Importantly, features
that are associated with the respective layer are also (un)stacked.
Layer example usage
from napari_timelapse_processor import TimelapseConverter
import numpy as np
from napari.layers import Points
import pandas as pd
random_points = [np.random.rand(10, 3) for _ in range(10)] # 10 timepoints of 10 random 3D points
random_features = [pd.DataFrame(np.random.rand(10)) for _ in range(10)] # 10 timepoints of 10 random feature values
# create a list of 10 Points layers
points = [Points(random_points[i], properties=random_features[i]) for i in range(10)]
converter = TimelapseConverter()
stacked_points = converter.stack(points, layertype='napari.layers.Points')
frame_by_frame¶
The frame-by-frame functionality provides a decorator that will inspect the decorated function for TimelapseConverter
-compatible arguments and, if a 4D value is passed as argument, will automatically (un)stack the data before and after the function call. This allows for a more intuitive API when working with timelapse data. Currently supported type annotations are:
napari.types.ImageData
napari.types.LabelsData
napari.types.PointsData
napari.types.VectorsData
napari.types.SurfaceData
napari.layers.Layer
napari.layers.Image
napari.layers.Labels
napari.layers.Points
napari.layers.Vectors
napari.layers.Surface
Additionally, the frame_by_frame
supports parallelization with dask.distributed. To use it, simply pass the use_dask=True
argument to the decorated function, even if the function itself does not require this argument. The decorater will then automatically parallelize the function call over the time-axis and remove the use_dask
argument when calling the function.
Example interactive code usage: If you want to use the frame_by_frame
functionality in, say, a Jupyter notebook, use it like this:
from napari_timelapse_processor import frame_by_frame
import numpy as np
def my_function(image: 'napari.types.ImageData') -> 'napari.types.ImageData':
return 2 * image
image_4d = np.random.rand(10, 32, 32, 32) # 10 timepoints of 32x32x32 data
image_4d_processed = frame_by_frame(my_function)(image_4d) # without dask
image_4d_processed = frame_by_frame(my_function)(image_4d, use_dask=True) # with dask
Example napari code If you want to use the frame_by_frame
functionality in a napari plugin, use it like this:
from napari_timelapse_processor import frame_by_frame
@frame_by_frame
def my_function(image: 'napari.types.ImageData') -> 'napari.types.ImageData':
return 2 * image
Hint: The frame_by_frame
functionality runs under the assumption that input napari-data (e.g., an Image, a Surface, Points, etc) are always arguments and any other parameters are always keyword arguments. If this is not the case, the decorator will not work as intended.
# This works
frame_by_frame(my_function)(image_4d, some_parameter=2, use_dask=True)
# This does not work
frame_by_frame(my_function)(image=image_4d, some_parameter=2, use_dask=True)
This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.
Installation¶
You can install napari-timelapse-processor
via pip:
pip install napari-timelapse-processor
Contributing¶
Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.
License¶
Distributed under the terms of the BSD-3 license, "napari-timelapse-processor" is free and open source software
Issues¶
If you encounter any problems, please [file an issue] along with a detailed description.
Version:
- 0.0.2
Last updated:
- 16 August 2024
First released:
- 15 July 2024
License:
- Copyright (c) 2024, Johannes Soltwedel All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Supported data:
- Information not submitted
Plugin type:
- Information not submitted
GitHub activity:
- Stars: 0
- Forks: 0
- Issues + PRs: 0